## Springfield Junior School Calculation Policy

## Key Points

- When using concrete or pictorial representation ensure that the children write out the calculation alongside so that they can begin the see the links between these and the abstract.
- Ensure that different representations and methods are offered so that children can begin to make decisions about their own preference of method. This also helps to support number fluency and understanding.
- Revisit calculations aspects regularly within Fast 5/10 morning work and as mental starters
- Encourage and model mental methods where appropriate (e.g. times tables, doubling and halving, counting on, multiplying by multiples of 10,100 and 1000 , adding or subtracting simple calculations (e.g.3467-401, 3654+106)
- Avoid using too many 'tricks' that do not lead to deeper understanding of mathematical concepts.
- When using a bar representation, model and discuss 'proportionality'.
- Model and encourage using squares in maths books when using formal methods for calculation (one digit per box; headings at the top of the columns where needed)
- Provide appropriate real life context for solving calculation problems.
- Use accurate mathematical vocabulary.

Addition

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Year 2/3 <br> Add 1 and 2 digit numbers to 100 |  | 38 <br> 38 <br> 23 |  |
| Year 3 <br> Add and <br> subtract <br> multiples of $100$ | Use dienes to represent hundreds | Use a bar, counters or part-whole model to represent the addition | Use a number line (mentally) <br> Number Line |





Subtraction

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Year 2 <br> Subtract <br> 1 and 2 <br> digits <br> from 100 |  <br>  |  | $65-28=37$ |


|  |  |  | $\begin{array}{r} 56 \\ 65 \\ -28 \\ \hline 37 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: |
|  |  |  | 435-273 $=262$ |
|  |  |  | $\begin{array}{r} 335 \\ 435 \\ -273 \\ \hline 262 \end{array}$ |


Year 5/6
Subtract
numbers
with up
to 3 dp,

## Multiplication

## Key Points

- Regular counting and times table practise
- Notice and discuss patterns in times tables (Odd, Even, digital sums, doubles, halves, 10 times bigger etc)

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Times tables <br> Year 2 <br> 2s, 5s, 10s <br> Year 3 <br> 3s, 4s, 8s <br> Year 4 <br> 6s, 7s, 9s, <br> 11s, 12s |  |  | Written representation of table |


|  | -000-000-000-000-000- | 1 2 3 4 5 6 7 8 9 10 <br> 11 12 13 14 15 16 17 18 19 20 <br> 21 22 23 24 25 26 27 28 29 30 <br> 31 32 33 34 35 36 37 38 39 40 <br> 41 42 43 44 45 46 47 48 49 50 |  |
| :---: | :---: | :---: | :---: |
| Year 2 <br> Solve 1 step multiplicatio n | -00000-00000-00000-00000- <br> $\bigcirc$ <br> $\bigcirc$ |  | One bag holds 5 apples. How many apples do 4 bags hold? $\begin{gathered} 5+5+5+5=20 \\ 4 \times 5=20 \\ 5 \times 4=20 \end{gathered}$ |
| Year 3/4 <br> Multiply <br> 2digit by 1 <br> digit <br> Presumes <br> good times <br> table <br> knowledge <br> (allow <br> children with <br> weaker <br> knowledge <br> to use TT |  | Drawings of dienes/counter representations from 'concrete' <br> Drawing of arrays <br> Partitioning (in multiple ways) <br> 10x5 10x5 10x5 4x5 <br> $30 \times 54 \times 5$ |  H T O   <br>   3 4   <br> $\times$   5   <br>   2 0 $(5 \times 4)$  <br>       <br>       <br> + 1 5 0 $(5 \times 30)$  <br>  1 7 0   |





## Division

## Key points

- Continued distinction between grouping and sharing
- Use models, manipulatives and pictures to build understanding
Year 2 Single
step problem
using
multiplicatio
n (sharing

| Year 2 |
| :--- |
| Divide 2digit |
| by 1digit |
| (sharing with |
| no grouping) |



|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  | $844 \div 4=122$ |




## Fractions

Key points

- Ensure lots of exposure to concrete and pictorial models
- Use accurate fractions vocabulary


| tenths | Finding 10ths of amounts physically <br> Use a bead string $\qquad$ <br> Dienes <br>  | Different pictorial representations of tenths. <br> Bar model <br> Partitioning | Recognise tenths as decimals |
| :---: | :---: | :---: | :---: |





|  |  | Number Lines |  |
| :---: | :---: | :---: | :---: |
| Year 4 <br> Fraction of amounts | As year 3 where necessary |  | Application of times table and division knowledge to find unit and non-unit fractions of amounts (where the amount is a multiple of the denominator) $\frac{1}{7} \text { of } 56=56 \div$ $\square$ |
| Year 5 <br> Improper <br> fractions and <br> mixed <br> numbers | As year 4 (fractions more than 1) |  | Improper fractions as division. Fraction remainders. e.g. $27 / 8=3$ r $3(33 / 8)$ |
| Year 5 <br> Compare and order where denominators and multiples of each other | As year 4 where needed |  | Finding common denominators <br> Use simplification to compare <br> Explore relationships between denominators to find equivalence to compare. |



|  |  |  | $+1$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year 6 <br> Comparing and ordering | As previous years where concrete representation is required to embed learning |   |  |  | Finding lowest common denominator to compare and order e.g. <br> Multiples of 6: 6, 12, 18, 24 Multiples of 4: 4, 8, 12, 16, 12 is the LCM of 4 and 6 |
| Year 6 <br> Simplifying <br> fractions |  |  |  |  |  |
| Year 6 <br> Add and <br> subtract <br> fractions <br> including <br> mixed <br> numbers | As Year 5 | As Year 5 |  |  | As Year 5 |
| Year 6 <br> Multiplying fractions |  | $4 \times \frac{7}{8}$ |  |  | Multiply the whole, then multiply the fractions (add together) |




